
© Fraunhofer IIS

GETTING AI IN YOUR POCKET 
WITH DEEP COMPRESSION

Dr. Axel Plinge, Ashutosh Mishra
Fraunhofer IIS – International Audio Labs Erlangen
Embedded World Conference Nürnberg; 26. Feb. 2020



Dr.-Ing. Axel Plinge © Fraunhofer IIS 22

GETTING AI IN YOUR POCKET 
TABLE OF CONTENTS

1. Motivation

 Deep Compression: Why? How?

 Success stories

2. State-of-the-Art

3. Methods

4. Summary



Dr.-Ing. Axel Plinge © Fraunhofer IIS 33

Getting AI in Your Pocket 
Motivation (1)

 DNNs are trained on Graphical Processing Units (GPUs)

 Should run on embedded devices in real-time

GPU Image by ChrisDag used under Creative Commons Attribution 2.0 Generic license. 
Embedded HW image taken from https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20191008/Documents/Wojciech_Samek_Presentation.pdf

https://www.flickr.com/people/8558461@N08
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by/2.0/deed.en
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20191008/Documents/Wojciech_Samek_Presentation.pdf
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Getting AI in Your Pocket 
Motivation (1)

 DNNs are trained on Graphical Processing Units (GPUs)

 Should run on embedded devices in real-time

 Still need considerable resources at run-time (inference)

 Deep Compression can get the DNN Models there!
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Getting AI in Your Pocket 
Motivation (2) Energy

Operation Energy 
[pJ] 

32 bit int ADD 0.1

32 bit float ADD 0.9

32 bit Register File 1

32 bit int MULT 3.1

32 bit float MULT 3.7

32 bit SRAM Cache 5

32 bit DRAM Memory 640

Source: 
http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf
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Getting AI in Your Pocket 
Motivation (3) Success Stories

 AlexNet (244MB)  SqueezeNet / MobileNet (5MB)

 Image classification and detection CNN

 Clever structural changes [Ian16,Google17]

 Reduction to 2% original size with similar performance

[Ian16] Iandola, F. N., Moskewicz, M. W. et al. (2016) “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size” 
arXiv:1602.07360

[Google17] Howard, A. G. et al. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.  ArXiv:1704.04861
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Getting AI in Your Pocket 
Motivation (3) Success Stories

 Natural Language Model (570MB)  (22MB)

 Reduction to 4% of original size

 Combination of compression & hashing [Amazon18]

 Amazon got Alexa from the Cloud on the Phone (!)

[Amazon18] Strimel, G. P. et al. (2018). Statistical Model Compression for Small-Footprint Natural Language Understanding. ArXiv:1807.07520.
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State-of-the-Art
Tools and Platforms (1/3)

 Various tools provide basic model compression

 NVIDIA TensorRT

 Intel OpenVINO Inference Engine 

 Intel nGraph

 CoreML

 …

Image source: 
Intel website https://www.intel.com/content/www/us/en/artificial-intelligence/ngraph.html

https://www.intel.com/content/www/us/en/artificial-intelligence/ngraph.html
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State-of-the-Art
Tools and Platforms (2/3)

 TVM Stack

Image source: 
[Chen17] Chen et al. (2017) „TVM: End-to-End Optimization Stack for Deep Learning“ArXiv abs/1802.04799
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State-of-the-Art
Tools and Platforms (3/3)

 More embedded platforms

 Newer smartphones have neuro-chips (!)

 Tensorflow lite for embedded devices (8bit SIMD, ...)

 Qualcomm Snapdragon SDK

 Android NNAPI 

 STM32Cube.AI

 …
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State-of-the-Art
Research in “deep compression”

 ANNs got DNNs, deeper = larger, now really interesting

 It got momentum as “Deep Compression” [Han15]

 Dedicated methods give large gains

 These methods can be classified roughly as

[Han15] S. Han et al. (2015) “Deep Compression: Compressing Deep Neural Networks with Pruning, trained Quantization 
and Huffman coding.” ArXiv:1510.00149

Pruning
Low-rank 

approxima
tion

Quantizati
on

Entropy 
Coding
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Deep Compression Methods
Pruning

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Pruning

 Remove weights = connections

 Remove neurons / filters

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Pruning

 Optimal Brain Damage [LeCun1990]

 Removes neurons based on training/validation error

 “Recipe”

1. Construct network with reasonable(!) architecture

2. Train

3. Compute Hessian (second derivatives of parameters)

4. Compute saliency (effect on training error)

5. Remove low-saliency parameters

6. Goto 2 [LeCun1990] LeCun, Y., Denker, J. S., & Solla, S. A. “Optimal brain damage” 
In Advances in neural information processing systems (pp. 598–605)
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Deep Compression Methods
Pruning

 Example: AlexNet [HanS15]

Image taken from [HanS15] Song Han (2015) Deep Compression and EIE, Stanford Lectures
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 Remove least used filters

 Less parameter reduction

 Direct speedup

 Flatten convolutions 

 Large parameter reduction

 Speedup ~ 2x

Deep Compression Methods
Pruning convolutional neural networks (CNNs)

[Jib14] Jin, Jonghoon, et. Al (2014) "Flattened convolutional neural networks for feedforward acceleration."
arXiv preprint arXiv:1412.5474
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 Depthwise convolution [Google2017]

 Direct speedup ~ 8x 

 Compression to 2-5%

Deep Neural Network (DNN) Optimization
Pruning

[Google2017] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., et al. MobileNets: Efficient CNNs for Mobile Vision Applications. 
ArXiv:1704.04861
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Deep Compression Methods
Low Rank Approximation

 The weight tensors are large and redundant

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Low Rank Approximation

 The weight tensors are large and redundant

 They can be approximated with low-rank subspaces

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Low Rank Approximation

 Singular value decomposition allows to express a tensor of lower rank 
than size as product of smaller matrices 

[Microsoft13] Xue, Jian et al. Restructuring of Deep Neural Network Acoustic Models with Singular Value Decomposition; Interspeech, 2013
Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Low Rank Approximation

 Singular value decomposition allows to express a tensor of lower rank 
than size as product of smaller matrices 

 This allows to replace one tensor by two small ones

[Microsoft13] Xue, Jian et al. Restructuring of Deep Neural Network Acoustic Models with Singular Value Decomposition; Interspeech, 2013
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Deep Compression Methods
Low Rank Approximation

 Requires some math and structural 
changes

 Does provide straightforward speed-
up (3x)

 Can be easily combined with other 
methods

[Chen19]  Z. Chen et al., "Exploiting Weight-Level Sparsity in Channel Pruning with Low-Rank Approximation," 2019 IEEE Int. Symposium on Circuits 
and Systems, Sapporo, Japan, 2019

[Denton14] Denton, E., Zaremba, W., Bruna, J., LeCun, Y., et al. “Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation” 
arXiv 1404:0736

Latency reduction on AlexNet [Chen19]
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Deep Compression Methods
Quantization

 Weights are stored as 32 bit floating point
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Deep Compression Methods
Quantization

 Weights are stored as 32 bit floating point

 Good results can be achieved with much lower resolution

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Quantization (1/4)

 Uniform Quantization

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Quantization (1/4)

 Uniform Quantization

 Use less bits, i.e. 8 bit integer instead of 32 bit float

 Retraining can improve performance, required for low bit count

 Int8 Integrated in many frameworks (PyTorch, TensorFlow lite,…)

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Quantization (2/4)

 XNOR Net [Rastegari16]

Image from [Rastegari16] Rastegari, M. et al. (2016) “XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks” ECCV. 
ArXiV: 1603.05279
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Deep Compression Methods
Quantization (3/4)

 Adaptive Quantization

Image © Axel Plinge, Fraunhofer IIS.
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Deep Compression Methods
Quantization (3/4)

 Adaptive Quantization

 It is vector quantization on weights [Facebook15,Amazon18]

 Can be implemented as look-up table for inference (as in CoreML)

Image © Axel Plinge, Fraunhofer IIS.
[Facebook15] Gong, Y. et al. (2015) Compressing Deep Convolutional Networks using Vector Quantization arXiv:1412.6115
[Amazon18] Strimel, G. P. et al. (2018). Statistical Model Compression for Small-Footprint Natural Language Understanding. ArXiv:1807.07520
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Deep Compression Methods
Quantization (4/4)

 Comparison of Post-Train Quantization [*]

 Uniform vs. adaptive Quantization for different number of bits

 Two Variants of Acoustic Detection DNNs
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Deep Compression Methods
Entropy Coding

Image courtesy of Fraunhofer HHI, Wojciech Samek & Simon Wiedemann
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Deep Compression Methods
Entropy Coding

 Lossless compression (zip)

 Works on the quantized representation

 Creates an minimal bitstream [HHI19]

 Representation is non-uniform, 
weights are mapped to a variable number of bits

[HHI19] Wiedemann, Simon, et al. (2019)"DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks." arXiv:1907.11900
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Getting AI in Your Pocket 
Summary (1/2)

 Motivation 
 DNNs require a large amount of computing power
 Trained DNN models have redundancy 
 This can be exploited for embedded deployment

 State of the Art
 Hardware vendors provide simple deployment tools
 Bigger gains are achieved by combinations of

 Deep Compression Methods
 Pruning removes part of the network
 Low rank Approximation exploits sparsity directly
 Quantization reduces representation accuracy
 Entropy Coding for lossless compression
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Getting AI in Your Pocket 
Summary (2/2)

 Future Work at Fraunhofer IIS
 Working on good ‘recipes’ for making deep learning applications in 

audio and video processing efficient
 Trainings in Machine Learning 
 We are hiring

 Further Information
 www.iis.fraunhofer.de/amm/
 www.audioblog.iis.fraunhofer.com
 amm-info@iis.fraunhofer.de

The results originate in part from a project funded by the 
German federal Ministry of Education and Research 
under the reference number 01IS19070A. 
The responsibility for the content rests with the authors.All trademarks are the property of their respective owners.

https://www.iis.fraunhofer.de/en/ff/lv/dataanalytics/mlforum.html
https://www.iis.fraunhofer.de/en/jobs.html
http://www.iis.fraunhofer.de/amm/
http://www.audioblog.iis.fraunhofer.com/

