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ABSTRACT

Voice Conversion (VC) generates synthetic speech from a source
speaker recording, preserving linguistic information and applying
the voice characteristics of a target speaker. In this paper, we pro-
pose PAD-VC, a prosody-aware VC model based on the decoder
part of the ForwardTacotron architecture. We train PAD-VC with
prosody-related features such as pitch, energy, and voicing con-
fidence and augment those with linguistic features derived from
a phoneme posteriorgram representation of the source utterance.
This way, we can handle both phonemic information and frame-
wise supra-segmental features. During inference time, the source
speaker’s prosody features are modified to match the prosody statis-
tics of the target speaker. We show that PAD-VC outperforms
ForwardTacotron in prosody-cloning for unseen source utterances,
achieving higher similarity and naturalness.

1. INTRODUCTION

Voice Conversion (VC) aims at generating synthetic speech sig-
nals, combining the linguistic content of utterances spoken by a
source speaker with the voice characteristics of a target speaker [1].
Thereby, the goal is to produce speech that sounds natural and
exhibits a high similarity to the target speaker’s voice. Some VC
systems use prosody-related features like phoneme durations and
f0 contour (pitch) along with the linguistic content. We refer to
those systems as prosody-aware systems. VC has various real-life
applications in speech pathology [1], entertainment [2, 3], and ed-
ucation [4]. In addition, VC can be utilized as a tool to create
plausible synthetic speech data to augment training corpora used for
speech enhancement and speech recognition.

1.1. Related Work

A variety of methodologies have been proposed for the VC task, as
shown in several studies [1, 5]. Early techniques focused on altering
voice timbre, often overlooking finer speaker-specific attributes [2].
Usually, these methods relied on parallel training data, where the
utterances spoken by the source and target speakers needed to have
the same phonetic content. In contrast, more recent VC techniques
enable the development of unsupervised systems that can capture
and transfer the supra-segmental aspects of human speech such as
intonation, stress patterns, and rhythm with basic phonetic content
to achieve more convincing voice conversion.

Most VC systems use mel spectrograms as the primary speech
representation, encoding all relevant features. However, it is not triv-
ial to disentangle the speech features of interest from there. More-
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over, mel spectrograms always have to be converted back to the time
domain to yield an audible speech signal. The standard procedure
is to use neural vocoders like HiFiGAN [6] or StyleMelGAN [7] for
this purpose.

The majority of deep learning architectures employed in VC can
be broadly classified into encoder-decoder architectures and Gener-
ative Adversarial Networks (GANs). Recent encoder-decoder ap-
proaches include AutoVC [8], SpeechSplit [3], and f0-AutoVC [9].
They are based on the principle that the encoder tries to disentan-
gle the source utterance’s linguistic content as a latent from the in-
put feature representation, while the decoder tries to generate a mel
spectrogram with the desired target speaker characteristics from the
latent. This approach requires a careful bottleneck tuning of the
encoder to achieve a desirable disentanglement. GAN-based ap-
proaches like StarGAN [10], however, rely on training a generator to
convert input speech features from the source to the target speaker’s
voice, while a discriminator simultaneously distinguishes between
natural and synthetic speech representations. Some GAN-based VC
methods leverage pre-trained speaker embeddings, such as ECAPA-
TDNN and x-vectors [11, 12]. A recent extension [6] of StarGAN is
tailored for converting expressive speech. Here, multiple encoders
are trained with task-specific losses to capture linguistic content,
speaker characteristics, and prosody. In general, these methods can
be challenging to train and prone to overfitting. As an alternative
to the previous approaches, TTS-based VC systems use textual in-
put to synthesize speech in the target speaker’s voice. To this end, an
acoustic model is trained to learn phoneme and speaker embeddings,
enabling independent swapping of spoken content and speaker iden-
tity. Some TTS-based VC methods are prosody-aware, as they trans-
fer prosodic attributes like phoneme-wise duration, pitch, and en-
ergy [13] to the target speaker’s voice. However, these approaches
can be error-prone, as they rely on the extraction of prosody-related
features on a phoneme-by-phoneme basis. As an alternative, the use
of mid-level linguistic content representations like phoneme posteri-
orgrams (PPG) has been explored in previous works [14, 15].

1.2. Our Contribution

In this paper, we introduce two novel prosody-aware VC approaches
based on the ForwardTacotron 1 (FT) architecture. Given the strong
performance of FT in conventional TTS settings [16], we adapt it
for VC. More precisely, we use an extended version of FT that can
process prosody-related features [17–19], hereafter referred to as FT-
VC. To our knowledge, this particular architecture has not been used
before for VC, although the concept of prosody-cloning has been
described in previous works [13].

As a second contribution, we propose PAD-VC, which uses

1https://github.com/as-ideas/ForwardTacotron
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Fig. 1. Overview of the two alternative TTS-based VC approaches explored in this paper. (a) Baseline FT-VC pre-Processing (b) FT De-
coder (c) Proposed PAD-VC pre-Processing. As indicated by the light gray arrows, the FT decoder can either be driven by (a) or (c), not both
concurrently. Blue: Data streams, Cyan: External modules, Apricot: Internal modules, ⊗: Concatenation of data streams.

only the prosody-aware decoder part of FT-VC in conjunction with a
Phoneme Posteriorgram (PPG) representation of the spoken content
in the source utterance. We will explain in Sec. 2 how PAD-VC
can mitigate some inherent issues of FT-VC. While using PPGs for
voice conversion has been proposed in other works before [14], we
focus on extracting disentangled and interpretable speech features
for VC. At the time of writing this manuscript, the paper [15] has
come to our attention, which is conceptually very close to PAD-VC.
The authors focus on comparing different input representations for
PPG extraction w.r.t. pitch-disentanglement and re-synthesis quality.
Our work was developed independently, and it remains subject to
future work to compare both approaches.

In summary, the main contributions of this paper are as follows:
1) We repurpose FT as the baseline FT-VC and use it to convert un-
seen source utterances into pre-trained TTS voices. 2) We detail how
to explicitly extract interpretable speech features and convert them
to match target speaker characteristics. 3) We introduce PAD-VC, a
modified decoder-only FT suitable for VC using PPGs and prosody-
related features. 4) We compare PAD-VC with the FT-VC approach
through subjective listening tests, which focus on the naturalness and
speaker similarity of the synthesized speech signals.

2. METHODOLOGY

In the following sections, we first briefly describe the prosody-aware
FT architecture and its adaptation for VC. Second, we detail the pro-
posed PAD-VC architecture and explain the differences in design
compared to FT-VC. Figure 1 provides an overview of the data flow
at inference time in both pipelines. Note that all external modules
depicted in Fig. 1 are to be interpreted as pre-trained and fixed.

2.1. Prosody-Aware ForwardTacotron

ForwardTacotron is a non-autoregressive acoustic model for TTS,
consisting of an encoder, a length regulator, and a decoder part. The
main purpose of the encoder part is to transform given phoneme se-
quences and speaker identity codes into internal vector representa-
tions. In addition, scalar values for f0, energy, and voicing confi-
dence are concatenated to this hidden representation (see Sec. 3.1
for details). The length regulator then resamples the resulting vec-
tors in a non-equidistant fashion to the temporal dimension of the
target mel spectrogram by means of nearest neighbor interpolation
(i.e., replication over several frames). Finally, the FT decoder shown
in Fig. 1(b) converts this coarse internal representation into a plausi-
ble mel spectrogram with the desired spoken content, prosody, and
target voice timbre.

2.2. ForwardTacotron Voice Conversion (FT-VC)

In a TTS-based VC scenario, the phoneme sequence describing the
linguistic content in the source utterance must be known. To this
end, we use an Automatic Speech Recognition (ASR) system, whose
transcription is run through Grapheme-to-Phoneme (G2P) conver-
sion. FT-VC requires the length regulator to have duration informa-
tion for each phoneme. We use a pre-trained phoneme aligner [20] to
estimate those durations given the G2P output and the source utter-
ance. The typical result of speech-phoneme alignment is illustrated
in Fig. 2(b). Note that we grouped the cascade of ASR, G2P, and
phoneme aligner into a single, external module in Fig. 1(a) to avoid
clutter. For the same reason, we did not draw the necessary connec-
tion from the aligner to the length regulator. The role of the range
normalization module is explained in Sec. 3.1.

In practice, we observe three main problems with FT-VC: 1) The
ASR and G2P are language-dependent, and any error they make
propagates into the downstream processing. 2) The phoneme aligner
can exhibit inaccuracies when processing utterances of unseen
speakers, especially for expressive speech. While fine-tuning on the
source utterance can help [13], we want to avoid retraining and have
only fixed modules in the pipeline. 3) Through the phoneme-wise
aggregation, frame-wise prosody features are first collapsed into an
average value across the duration of the corresponding phoneme,
only to be expanded back to their original temporal extent later on
by the length regulator.

2.3. Prosody-Aware Decoder Voice Conversion (PAD-VC)

The proposed PAD-VC approach mitigates the aforementioned prob-
lems by making use of frame-wise prosody features as well as frame-
wise content representations in the form of PPGs (see Sec. 3.2). As
indicated by its name and depicted in Fig. 1(c), the PAD-VC archi-
tecture can be interpreted as a truncated, decoder-only FT-VC. The
range normalization and the speaker embedding layer are retained
from the FT-VC architecture. The rationale behind using PPGs is to
have an interpretable mid-level representation of the spoken content
that is not as rigid as discrete symbolic phoneme sequences but a
probability of phoneme occurrences over time. It also captures fine
pronunciation details in the source utterance through gradual tran-
sitions and possibly overlapping phoneme activations. We illustrate
the correspondence between PPGs and phoneme sequences in Fig. 2.
Not having to use ASR and G2P simplifies the complexity and re-
duces susceptibility to error-propagation of the pipeline. Not work-
ing with phoneme sequences also renders the phoneme aligner and
length regulator mechanisms obsolete. This way, we avoid the pro-
cess of first aggregating and then expanding the frame-wise features



again. Instead, both prosody-related and PPG features are resam-
pled by linear interpolation to the temporal dimension of the target
mel spectrogram. In summary, PAD-VC is a streamlined method to
derive a similarly powerful internal representation as FT-VC to be
subjected to FT decoding for any-to-few VC.

3. DATASET AND FEATURES

For this paper, we use a multi-speaker English dataset comprising
recordings from four distinct speakers: ‘female1’ [21] (22.89 hours),
‘male1’ [22] (5.43 hours), ‘female2’ (2.22 hours), and ‘male2’ (2.14
hours). The first two datasets comprise recordings from native En-
glish speakers with a British accent. The latter two datasets are pro-
prietary and feature recordings in the English language by profes-
sional voice actors with an audible German accent. Each dataset
includes pairs of weakly aligned phoneme annotations and corre-
sponding speech recordings. As a pre-processing step, the record-
ings are downsampled to 22,050 Hz, high-pass filtered to remove
DC offsets, and normalized w.r.t. maximum absolute amplitude. As
shown in Fig. 1(b), we use mel spectrograms as the target speech
representation. They are extracted with 80 bands, using a hop size
of 256 samples and a block size of 1024 samples.

3.1. Prosodic Features

As shown in Figs. 1(a) and (c), we extract prosody features in a
frame-wise manner from the source utterance. They comprise en-
ergy (computed as the L2-norm of mel spectrogram frames), pitch
(f0 in Hertz), and voicing confidence (saliency of the pitch esti-
mate). We use CREPE [23] as a pitch extractor. Obviously, those
features are not necessarily speaker-agnostic. Pitch, for example,
varies among individuals due to factors like age, gender, and phys-
iological traits. Thus, we normalize the pitch features of the source
utterance to zero mean and unit variance using the source speaker’s
statistics. We subsequently adapt them by scaling and translation to
match the statistics of the target speaker. Consistent with previous
work, pitch estimates below a voicing confidence threshold of 0.5
are disregarded in the calculation of the mean and variance. The
range normalization module in both FT-VC and PAD-VC is respon-
sible for this adaption.

3.2. Frame-Wise vs. Phoneme-aligned Features

The subsequent feature processing steps differ between FT-VC and
PAD-VC. In FT-VC, we aggregate the frame-level features to the
phoneme level. As a pre-requisite, the given weak alignments be-
tween phoneme transcriptions and mel spectrograms need to be re-
fined into a more accurate phoneme-wise alignment, which spec-
ifies the temporal correspondences between mel frames and indi-
vidual phonemes in the transcription. For this task, we utilize the
aligner model [20]. It uses the Connectionist Temporal Classifica-
tion (CTC) paradigm [24] to temporally align phoneme sequences
with mel spectrograms. In contrast, for PAD-VC training, we use
frame-wise features and simply resample them by means of linear
interpolation along the time-axis to match the temporal dimension
of the target mel spectrograms. While these steps may seem like a
coarse approximation, they work surprisingly well in practice since
the recurrent units in the FT decoder still provide enough modeling
capacity to compensate for slight inaccuracies at the frame level.
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Fig. 2. Different input representations for the source utterance
“Locksmith by trade.” (a) Mel spectrogram, (b) time-aligned
phoneme sequence, (c) phoneme posteriorgram. In some segments, a
high agreement between the PPG and the aligned phoneme sequence
can be observed, e.g., for the IPA symbol [m], active between frame
30 and 40.

3.3. Phoneme Posteriorgram

For PAD-VC, a speaker-independent ASR module is used to extract
the PPG from the source utterance. A PPG consists of a temporal
sequence of probability vectors, where each vector corresponds to a
probability distribution over phoneme symbols, following the Inter-
national Phonetic Alphabet (IPA), as shown in Fig. 2(c). We use a
pre-trained model 2 as a PPG extractor. It is based on Wav2Vec [25]
and the CTC paradigm [24]. The raw PPG output of this system
also contains entries for non-required symbols, such as padding,
unknown, word boundary, and sentence delimiter symbols, which
often have high probabilities. We post-process the PPG and re-
move these entries. If the highest probability for a given frame
corresponds to one of the removed entries, we add its probability
to this frame’s value of the probability-maximizing phoneme from
the previous frame, effectively prolonging the activity of the high-
probability phonemes in the PPG. A similar methodology has been
found to produce valid results [15, 26]. This representation is used
as a speaker-agnostic encoding of the linguistic content of a source
utterance.

4. EXPERIMENTS

4.1. Experimental Setup

Both FT-VC and the proposed PAD-VC model are trained on an
NVIDIA 1660 Ti GPU with the datasets described in Sec. 3 for 300k
steps, using a batch size of 16. A learning rate scheduler is employed
with the Adam optimizer using an initial value of 10−4, which de-
creases to 10−5 at a predetermined step count.

2https://github.com/ASR-project/Multilingual-PR
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4.2. Inference

In this section, we provide a detailed explanation of how inference is
performed with both FT-VC and PAD-VC in our experiments. Ini-
tially, in FT-VC, prosody features are extracted from the source ut-
terance. In addition, we apply the popular ASR system Whisper 3

to transcribe the utterances and convert their transcripts to phoneme
sequences by means of a British English pronunciation dictionary.
Later, we use the phoneme sequence, the modified prosody fea-
tures, and the desired speaker identifier as input to the FT decoder
to synthesize the source utterance in the target speaker’s voice. For
PAD-VC, apart from the change in linguistic content representation,
the same prosody features used as in FT-VC are extracted. Unlike
in FT-VC, they are not subjected to phoneme-wise aggregation but
still undergo the same scale-and-shift adaption. For both FT-VC and
PAD-VC, the mel spectrograms predicted by the FT decoder are con-
verted into time-domain speech signals using a pre-trained StyleMel-
GAN [7] neural vocoder.

4.3. Listening Tests

We used audio excerpts from the Expresso dataset 4 as source ut-
terances for listening tests. The dataset comprises four speakers,
each contributing to two distinct categories: spontaneous conver-
sational and read speech. Our source utterances are drawn from
the read speech category with a neutral reading style. While se-
lecting the samples, we ensured that the source speakers were dis-
tinct from our target speakers and that the utterances covered a wide
range of phonetic content variations. The listening test was con-
ducted in a MUSHRA-like test environment [27] for two aspects:
speaker similarity and speech naturalness. Participants were asked
to assess the voice-converted audio samples generated by both FT-
VC and PAD-VC in comparison to a copy-synthesis reference. The
listening tests included intra-gender and inter-gender conversions,
i.e., the source and the target speakers were chosen for male-to-male
(M2M), male-to-female (M2F), female-to-male (F2M), and female-
to-female (F2F) conversions. In the evaluation, we summarized the
listening test scores for these gender conversion types into a single
result. However, PAD-VC exhibits similar performance across dif-
ferent gender conversion types, which illustrates the robustness of
the proposed method.

In the first test, we evaluated the speech naturalness. The par-
ticipants were instructed to rate the outputs for the two different ap-
proaches on a scale from 1 to 5, where 1 indicates a perception of
the output as being very unnatural, and 5 indicates a perception of
the output as being very natural. In the second test, we evaluated
the speaker similarity to assess how closely the synthesized speech
resembles the characteristics of the target speaker. In VC, a cen-
tral objective is to ensure that the converted speech closely mimics
the target speaker’s characteristics, such as pitch, timbre, intonation,
and accent. To evaluate this property, the participants were again in-
structed to assess the outputs from our two distinct approaches using
a scale from 1 to 5. A score of 1 suggests that the synthesized sam-
ple’s speaker characteristics are very dissimilar to the reference’s,
while a score of 5 indicates they are very similar.

5. RESULTS AND DISCUSSION

In total, 14 listeners participated in both tests, including eight males
and six females, with no known hearing impairments and an average

3https://github.com/openai/whisper
4https://speechbot.github.io/expresso
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Fig. 3. Boxplots for the results of (a) the speech naturalness test
and (b) the speaker similarity test, where our FT-VC and PAD-VC
approaches were evaluated along with the reference (REF) obtained
by copy synthesis.

age of 31.4 years. Both listening tests were taken independently. We
had to exclude two listeners from the statistical evaluation since they
had given the copy-synthesis references a lower rating than the VC
examples.

The results for the two assessments are depicted in Fig. 3.
Specifically, Fig. 3(a) shows the boxplots related to speech natural-
ness, and Fig. 3(b) shows the speaker similarity results, respectively.
It is apparent from the plot that the proposed PAD-VC system per-
forms better than the baseline FT-VC for both speaker similarity
and speech naturalness tests. As expected, the copy-synthesis refer-
ence is preferred by the listeners, which indicates that there is room
for further improvement 5. It is important to note that the source
samples are unseen and exhibit distinctive speaker characteristics
in comparison to the training data (e.g., American accents). Nev-
ertheless, the proposed PAD-VC system effectively transfers those
utterances with their prosodic nuances to the target speakers’ voices.
One reason for the poorer performance of the FT-VC system is its
reliance on phoneme durations, where possible misalignments lead
to a reduction in the clarity of linguistic content.

6. CONCLUSION

We proposed PAD-VC to perform prosody-aware voice conversion
with a modified FT decoder. To this end, we combine a phonetic con-
tent representation with the prosody-related features of the source
speaker. A simple yet effective shift-and-scale technique normal-
izes the source utterance’s f0 and energy to the pre-calculated target
speaker range. In subjective listening tests, we compared the capa-
bilities of PAD-VC versus the baseline FT-VC approach for any-to-
few VC. This study lays the groundwork for further TTS-based VC
research, inviting future exploration to address its complexities and
nuances. Furthermore, we believe it is promising to investigate the
suitability of PAD-VC for additional scenarios like any-to-any VC
and singing VC.
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