Seminars referring to Reinforcement Learning

"Reinforcement Learning (RL)" is an area of machine learning. The goal here is to enable an autonomous agent to accomplish a task through trial-and-error without using annotated training data. The agent is not given examples of correct actions (e.g., as in Supervised Learning), but must interact with the environment to discover a strategy that maximizes the expected cumulative reward for the task at hand.

Through a combination of theory and actual industry case studies, this two-day seminar will enable you to understand the value and impact of this technology on your business. You will learn how to formulate several problem types according to the RL paradigm and design (or, respectively, select from a large base) efficient algorithms to solve them. In addition, through practical examples, you will gain a solid understanding of how to apply RL algorithms in practice using state-of-the-art software frameworks.

By participating in the seminar, you will: understand the foundations of Reinforcement Learning, learn how to formulate a given problem within the context of Reinforcement Learning paradigm, study different types of Reinforcement Leaning algorithms, implement Reinforcement Learning algorithms for real-world problems using state-of-the-art software, learn how to apply Reinforcement Learning in real-world autonomous systems

Content of the Seminar »Reinforcement Learning«

Day 1

The THEORETICAL basics  
  • Short introduction on AI and Autonomous Systems
  • Markov Decision Processes and Dynamic Programming
  • Q-Learning and SARSA algorithms
  • Value Function Approximation
  • Hands-on examples of basic algorithms
 

 

Day 2

Deep Reinforcement learning in practice
  • Deep Q-Learning algorithms and extensions
  • Policy search algorithms
  • Actor Critic methods

 

Advanced Topics:

  • Imitation Learning and Inverse Reinforcement Learning
  • Model-based Reinforcement Learning
  • Simulation to Reality transfer
  • Interpretable Reinforcement Learning
  • End-to-End Reinforcement Learning


Best Practices:

  • Reward Shaping and Curriculum-Learning
  • Hyperparameter-Tuning
  • Debugging of Reinforcement Learning Algorithms
  • Selecting suitable algorithms for different types of problems
  • Hands-on examples for core algorithms
  • Reinforcement Learning examples in industrial applications

 

Who should attend this seminars?

  • Industry managers with strategic decision-making responsibilities
  • Key members of in-house R&D teams
  • Algorithm engineers and programmers
  • Industry consultants

Price: 1200 Euro

Registration

Registration Seminar Reinforcement Learning

Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Billing address if different
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.


Einwilligung zur Speicherung und Nutzung Ihrer personengebundenen Daten und zum Erhalt von regelmäßigen Informationen (per E-Mail, Newsletter oder Postwurfsendung) zum Forschungs- und Leistungsangebot vom Fraunhofer IIS. Ihre Daten behandeln wir selbstverständlich vertraulich und geben sie nicht an Dritte weiter.

Die Einwilligungserklärung erfolgt freiwillig und kann jederzeit widerrufen werden. Nach Bestätigung Ihrer Anmeldung zur Veranstaltung erhalten Sie eine weitere Email zu Bestätigung Ihrer Anmeldung zum Fraunhofer IIS Info Service.


Consent to the storage and use of your personal data and to receive regular information (by e-mail, newsletter or direct mail) on the research and services offered by Fraunhofer IIS. We will of course treat your data confidentially and will not pass it on to third parties.

The declaration of consent is voluntary and can be revoked at any time. After confirming your registration for the event, you will receive another email confirming your registration for the Fraunhofer IIS Info Service.

Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.

Further Seminars

Machine Learning Seminars

The web seminar on machine learning conveys the successful implementation of machine learning projects for industry in a professional environment.