Präzise GNSS-Empfänger

Maßgeschneiderte Lösungen für Ihre Ansprüche

In einer Welt, in der Präzision und Zuverlässigkeit immer wichtiger werden, bieten unsere GNSS-Empfänger die ideale Lösung für Anwendungen, die eine punktgenaue Positions- und Zeitbestimmung erfordern. Ob bei der Navigation mit dem Smartphone, im autonomen Fahren oder im Smart-City-Bereich – GNSS-Empfänger sind unverzichtbar geworden. Sie ermöglichen es, jederzeit und überall die optimale Positions- und Zeitinformation zu erhalten.

Das Fraunhofer IIS entwickelt individuelle Empfängerlösungen, die speziell auf Ihre Anforderungen zugeschnitten sind. Wir nutzen alle verfügbaren Satellitennavigationssignale wie Galileo, GPS, GLONASS, BeiDou und SBAS im Mehrfrequenzbereich, um Ihnen eine präzise und zuverlässige Positionierung zu gewährleisten. Unsere Empfängerentwicklungsplattform GOOSE bildet dabei die Grundlage, auf der wir sowohl neue Systeme entwickeln als auch bestehende Lösungen optimieren. Damit garantieren wir Ihnen jederzeit eine präzise, sichere und zukunftsfähige Positions- und Zeitbestimmung – genau auf Ihre Bedürfnisse abgestimmt.

Erleben Sie mit unseren fortschrittlichen GNSS-Empfängern die Zukunft der Navigation, die Ihnen nicht nur präzise Daten liefert, sondern Ihnen den entscheidenden Vorteil verschafft, den Sie brauchen, um in Ihrer Branche erfolgreich zu sein.

Was bieten Ihnen präzise GNSS-Empfänger?

Unsere hochentwickelten GNSS-Empfänger sind darauf ausgelegt, Ihre anspruchsvollsten Anforderungen zu erfüllen und Ihnen zu helfen, Ihre Projekte mit höchster Präzision und Effizienz umzusetzen. Erfahren Sie mehr darüber, wie unsere fortschrittliche Technologie Ihnen zentimetergenaue Positionierungen, fortschrittliche Fehlerkorrektur ohne Basisstation und schnelle, sichere Daten liefert, die robust gegen Störungen sind. Lassen Sie sich von den Vorteilen überzeugen, die unsere GNSS-Empfänger für Ihre Anwendung bieten können:

Fehlerkorrektur ohne Basisstation

Dank innovativer Korrekturverfahren wie SSRZ erzielen Sie zentimetergenaue Positionen – ganz ohne die Notwendigkeit einer Basisstation. Diese fortschrittliche Technologie ermöglicht Ihnen maximale Flexibilität und Präzision, selbst in abgelegenen Gebieten oder bei mobilen Anwendungen.

Robust bei schwierigen Bedingungen

Verlassen Sie sich auf zuverlässige Positionierung auch in herausfordernden Umgebungen wie dichten Wäldern oder bei hohen Beschleunigungen, z.B. in Raketen.

Höchste Präzision und Zuverlässigkeit

Erhalten Sie zentimetergenaue Positionen, die für Anwendungen mit höchsten Anforderungen an Präzision und Integrität unerlässlich sind.

Unser Leistungsangebot

Beratung und Bedarfsanalyse

  • Beratung: Wir vergleichen GNSS-Empfänger und empfehlen Ihnen die optimalste Lösung für Ihren Bedarf
  • Bedarfsanalyse: Wir ermitteln Ihre spezifischen Anforderungen und entwickeln maßgeschneiderte GNSS-Lösungen für Ihre präzisen Anwendungen

 

Hardwareentwicklung

  • ASIC-Entwicklung: Entwicklung von analogen, mixed-signal und digitalen ASICs für GNSS-Empfänger
  • Multi-band Front-ends: Entwicklung und Integration von Multi-band Front-ends für GNSS-Empfänger
  • Integrierte GNSS-Empfänger: Fertigung und Integration von hochpräzisen GNSS-Empfängern

Simulation

  • GNSS-Simulatoren: Multiband-, Multisystem-Signalen (GPS, Galileo, GLONASS, BeiDou) inkl. regionalen und SBAS-Systemen (QZSS, WAAS, EGNOS) mit generierten inertialen Testsignalen
  • Mehrwege-Simulation: Simulation von bis zu 150 Signalen für umfangreiche Tests
  • Hybride-Simulation: Kombination von GNSS und 5G für innovative Testmöglichkeiten

Testumgebungen und mobile Messlösungen

  • Dynamische Testumgebung: Schienenreferenzsystem für GNSS-unabhängige mm-genaue Echtzeit-Ground-truth
  • Mobiles Messlabor L.I.N.K. Mobil: Ortsunabhängige Tests mit High-End Referenzempfängern und INS-Kopplung für präzise Ground-truth

Entwicklung und Anpassung von GNSS-Lösungen

  • Individuelle GNSS-Lösungen: Entwicklung maßgeschneiderter GNSS-Lösungen für Ihre Bedürfnisse.
  • Kommerzielle GNSS-Komponenten: Einsatz bewährter kommerzieller GNSS-Komponenten für zuverlässige, kosteneffiziente Lösungen.
  • Anpassung von RTKLIB: Spezielle Anpassungen der RTKLIB-Software für kosteneffiziente, hochpräzise GNSS-Empfänger.

Wo bieten präzise GNSS-Empfänger einen Nutzen?

Unsere maßgeschneiderten GNSS-Lösungen finden Anwendung in einer Vielzahl von Branchen und Projekten, die höchste Präzision und Zuverlässigkeit erfordern. Hier sind einige der Bereiche, in denen wir aktiv sind:

Luft- und Raumfahrt

Eine GOOSE©-Plattform für AFTS und präzises Einsetzen in die Umlaufbahn

Umsetzungen

Schifffahrt

(Teil-)autonomes Fahren von Schiffen auf Binnenkanälen: Stärkung der Häfen am Ende von Stichkanälen kann den Verkehr an Land erbehblich entlasten.

Bahn- & Schienenverkehr

Gleisgenaue Positionierung für autonomens Fahren auf der Schiene.

Umsetzungen

Land- und Fortstwirtschaft

Nachhaltig und Effizient: Wie mit einer verbesserten Positionsbestimmung in der Land- und Forstwirtschaft eine bodenschonende und gleichzeitig effiziente Bewirtschaftung gelingen kann

Umsetzungen

Automotive

Präzise GNSS-Positionsdaten in Echtzeit für Anwendungen in der Automobilbranche.

Umsetzungen

Rettungskräfte

Grüne Welle für Sondereinsatzfahrzeuge durch Galileo PRS.

 

 

Umsetzungen

Publikationen

Franco Contreras, David; Cortés, Iñigo; Kontes, Georgios; Feigl, Tobias; Mutschler, Christopher; Rügamer, Alexander (2024): Reinforcement Learning Framework for Robust Navigation in GNSS Receivers, in: 2024 Proceedings of the 37th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2024)

Cortés, Iñigo; Dietmayer, Katrin; Garzia, Fabio; Toca, Carlos; Overbeck, Matthias; Felber, Wolfgang (2024): Adaptive Ultra-Tight Integration Architecture for Robust GNSS Tracking, in: 2024 Proceedings of the International Technical Meeting of The Institute of Navigation

van der Merwe, Johannes R.; Cortés, Iñigo; Saad, Muhammad; Garzia, Fabio; Rügamer, Alexander; Overbeck, Matthias; Felber, Wolfgang (2023): Comparison of interference mitigation with adaptive notch filter architectures against privacy protection devices, in: 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)

Cortés, Iñigo; Garzia, Fabio; Conde, Natalia; Lohan, Elena Simona; Nurmi, Jari; Felber, Wolfgang (2023): Normalized Bandwidth Control Algorithm for Robust GNSS Adaptive Tracking, in: Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023)

Cortés, Iñigo; Urquijo, Santiago; Overbeck, Matthias; Felber, Wolfgang; Agrotis, Loukis; Mayer, Volker; Schönemann, Erik; Enderle, Werner (2022): Robust Tracking Strategy for Modern GNSS Receivers in Sounding Rockets, in: 2022 10th Workshop on Satellite Navigation Technology (NAVITEC)

Cortés, Iñigo; van der Merwe, Johannes R.; Lohan, Elena Simona; Nurmi, Jari; Felber, Wolfgang (2022): Performance Evaluation of Adaptive Tracking Techniques with Direct-State Kalman Filter, in: 2022 Sensors

van der Merwe, Johannes R.; Garzia, Fabio; Rügamer, Alexander; Urquijo, Santiago; Franco Contreras, David; Felber, Wolfgang (2022): Wide-Band Interference Mitigation in GNSS Receivers Using Sub-Band Automatic Gain Control, in: 2022 Sensors

Conde, Natalia; Cortés, Iñigo; van der Merwe, Johannes R.; Rügamer, Alexander; Felber, Wolfgang (2022): Analysis of Multipath Effect in the Tracking Stage using Loop Bandwidth Control Algorithm, in: 2022 Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022)

Dietmayer, Katrin; Duong, Phuong Bich; van der Merwe, Johannes R.; Ghimire, Birendra; Seitz, Jochen (2022): Network-Assistance to Improve Joint 5G and GNSS Positioning for GNSS Anti-Spoofing, in: 2022 Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022)

Cortés, Iñigo; Conde, Natalia; van der Merwe, Johannes R.; Lohan, Elena Simona; Nurmi, Jari; Felber, Wolfgang (2022): Low-Complexity Adaptive Direct-State Kalman Filter for Robust GNSS Carrier Tracking, in: 2022 International Conference on Localization and GNSS (ICL-GNSS).

Cortés, Iñigo; Marín, Pablo; van der Merwe, Johannes R.; Lohan, Elena Simona; Nurmi, Jari; Felber, Wolfgang (2021): Adaptive Techniques in Scalar Tracking Loops with Direct-State Kalman-Filter, in: 2021 International Conference on Localization and GNSS (ICL-GNSS).

Cortés, Iñigo; van der Merwe, Johannes R.; Nurmi, Jari; Rügamer, Alexander; Felber, Wolfgang (2021): Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers, in: Sensors 21, no. 2: 502.

Dietmayer, Katrin; Garzia, Fabio; Overbeck, Matthias; Felber, Wolfgang (September 2020): Vector Delay and Frequency Lock Loop in a Real-time Hardware Environment, in: Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), pp. 2858-2866.

Merwe, J. Rossouw van der; Garzia, Fabio; Saad, Muhammad; Kreh, Barbara; Rügamer, Alexander; Plata, Ricardo Monroy Gonzalez; Felber, Wolfgang (September 2020): Receiver Bandwidth Compression for Multi-GNSS Signal Processing, in: Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), pp. 3671-3685. 

Cortes, I.; Iniguez de Gordoa, J.A.; Merwe, J.R. van der; Rügamer, A.; Felber, W. (Juni 2020): Performance and Complexity Comparison of Adaptive Loop-Bandwidth Tracking Techniques, in: Nurmi, J.; Institute of Electrical and Electronics Engineers -IEEE-: 10th International Conference on Localization and GNSS, ICL-GNSS 2020. Conference Proceedings: 2-4, 2020, Tampere, Finland, virtual Piscataway, NJ: IEEE,  S. 13-19.

Cortes, I.; Merwe, J.R. van der; Rügamer, A.; Felber, W. (20. - 23. April 2020): Adaptive Loop-Bandwidth Control Algorithm for Scalar Tracking Loop, in: Institute of Electrical and Electronics Engineers -IEEE-; Institute of Navigation -ION-, Manassas/Va.: IEEE/ION Position, Location and Navigation Symposium, PLANS 2020: Portland, Oregon, cancelled, Piscataway, NJ: IEEE, S.1178-1188.

Dietmayer, K.; Kunzi, F.; Garzia, F.; Overbeck, M.; Felber, W. (20. - 23. April 2020): Real Time Results of Vector Delay Lock Loop in a Light Urban Scenario, in: Institute of Electrical and Electronics Engineers -IEEE-; Institute of Navigation -ION-, Manassas/Va.:
IEEE/ION Position, Location and Navigation Symposium, PLANS 2020: Portland, Oregon, cancelled, Piscataway, NJ: IEEE, S.1230-1236.

Dietmayer, K.; Saad, M.; Strobel, C.; Garzia, F.; Overbeck, M.; Felber, W. (9. - 12. April 2019): Real time implementation of Vector Delay Lock Loop on a GNSS receiver hardware with an open software interface, in: European Navigation Conference, ENC 2019 : Warsaw, Piscataway, NJ: IEEE, 2019, S.122-128.

Overbeck, Matthias; Garzia, Fabio; Strobel, Christian; Nickel, Christian; Saad, Muhammad; Meister, Daniel; Felber, Wolfgang (12. - 16. September 2016): GNSS-receiver with open interface for deeply coupling and vector tracking, in: Institute of Navigation -ION-, Satellite Division, Washington/DC: 29th International Technical Meeting of the Satellite Division of The Institute of Navigation, ION GNSS+ 2016. Proceedings: Oregon Convention Center, Portland, Oregon, Fairfax/Va.: ION, S.1222-1229. 

Garzia, Fabio; Strobel, Christian; Overbeck, Matthias; Kumari, Neelam; Joshi, Shrikul; Förster, Frank; Felber, Wolfgang (30. Mai - 2. Juni 2016):
A multi-frequency multi-constellation GNSS development platform with an open interface, in: Institute of Electrical and Electronics Engineers -IEEE-: European Navigation Conference, ENC 2016 : Helsinki, Finland, Piscataway, NJ: IEEE, 2016, S.49-55.

Overbeck, M.; Garzia, F.; Popugaev, A.; Kurz, O.; Förster, F.; Felber, W.; Ayaz, A.S.; Ko, S.; Eissfeller, B. (14. - 18. September 2015): GOOSE - GNSS receiver with an open software interface, in: Institute of Navigation -ION-, Manassas/Va.; Institute of Navigation -ION-, Satellite Division, Washington/DC: 28th international technical meeting of the Satellite Division of The Institute of Navigation, ION GNSS+ 2015.  Tampa Convention Center, Tampa, Florida, Manassas/Va.: ION, S.3662-3670.

Garzia, F.; Köhler, S.; Urquijo, S.; Neumaier, P.; Driesen, J.; Haas, S.; Leineweber, T.; Zhang, T.; Krause, S.; Henkel, F.; Rügamer, A.; Overbeck, M.; Rohmer, G. (2014): Multi-Constellation. Dual-Frequency. Single-chip. Fully integrated NAPA Receiver brings mass-market potential, in: GPS World 25, Nr. 9, S. 28-37.

Garzia, F.; Köhler, S.; Urquijo, S.; Neumaier, P.; Driesen, J.; Haas, S.; Leineweber, T.; Zhang, T.; Krause, S.; Henkel, F.; Rügamer, A.; Overbeck, M.; Rohmer, G. (2014): NAPA: A fully integrated multi-constellation two-frequency single-chip GNSS Receiver, in: Institute of Electrical and Electronics Engineers (IEEE); Aerospace and Electronic Systems Society (AESS); Institute of Navigation (ION), Manassas/Va.: IEEE/ION Position, Location and Navigation Symposium, PLANS 2014, Proceedings. Vol.2, Monterey, California, USA, S.1075-1083, DOI: http://dx.doi.org/10.1109/PLANS.2014.6851476.

Rügamer, A.; Urquijo, S.; Eppel, M.; Milosiu, H.; Görner, J.; Rohmer, G. (2012): An Integrated Overlay Architecture Based Multi-GNSS Front-end, in: Proceedings of IEEE/ION PLANS 2012, Myrtle Beach, South Carolina , S. 50-59.

Rügamer, A.; Mongrédian, C; Urquijo, S.; Rohmer, G. (2011): Optimal path-control for dual-frequency overlay GNSS receivers, in: International Conference on Localization and GNSS (ICL-GNSS), Tampere,  S. 158-163, doi: 10.1109/ICL-GNSS.2011.5955255.

Rügamer, A.; Urquijo, S.; Rohmer, G. (2010): Multi-band GNSS Front-end Architecture Suitable for Integrated Circuits, in: Proceedings of the 2010 International Technical Meeting of The Institute of Navigation, San Diego, CA, S. 688-697.